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Abstract

We investigate adversarial robustness of Gaus-
sian Process Classification (GPC) models. Given
a compact subset of the input space T ⊆ Rd

enclosing a test point x∗ and a GPC trained on
a dataset D, we aim to compute the minimum
and the maximum classification probability for
the GPC over all the points in T . In order to
do so, we show how functions lower- and upper-
bounding the GPC output in T can be derived,
and implement those in a branch and bound op-
timisation algorithm. For any error threshold
ϵ > 0 selected a priori, we show that our al-
gorithm is guaranteed to reach values ϵ-close to
the actual values in finitely many iterations. We
apply our method to investigate the robustness
of GPC models on a 2D synthetic dataset, the
SPAM dataset and a subset of the MNIST dataset,
providing comparisons of different GPC training
techniques, and show how our method can be
used for interpretability analysis. Our empirical
analysis suggests that GPC robustness increases
with more accurate posterior estimation.

1 INTRODUCTION

Adversarial examples (i.e. input points intentionally
crafted to trick a model into misclassification) have raised
serious concerns about the security and robustness of mod-
els learned from data (Biggio & Roli, 2018). Since test

Proceedings of the 23rdInternational Conference on Artificial In-
telligence and Statistics (AISTATS) 2020, Palermo, Italy. PMLR:
Volume 108. Copyright 2020 by the author(s).

∗Equal Contributions.

accuracy fails to account for the behaviour of a model in ad-
versarial settings, the development of techniques capable of
quantifying the adversarial robustness of machine learning
models is an essential pre-condition for their application in
safety-critical scenarios (Ribeiro et al., 2016). In particular,
Gaussian Processes (GPs), thanks to their favourable ana-
lytical properties, allow for the computation of the uncer-
tainty over model predictions in Bayesian settings, which
can then be propagated through the decision pipeline to
facilitate decision-making (Rasmussen, 2004). However,
while techniques for the computation of robustness guaran-
tees have been developed for a variety of non-Bayesian ma-
chine learning models (Katz et al., 2017; Huang et al., 2017;
Biggio & Roli, 2018), to the best of our knowledge studies
of adversarial classification robustness of GPs have been
limited to statistical (i.e. input distribution dependent) (Ab-
delaziz, 2017) and heuristic analyses (Grosse et al., 2018;
Bradshaw et al., 2017), and methods for the computation of
adversarial robustness guarantees are missing.

In this work, given a trained GP Classification (GPC)
model and a compact subset of the input space T ⊆ Rd,
we pose the problem of computing the maximum and mini-
mum of the GPC class probabilities over all x ∈ T . We
show that such values naturally allow us to compute ro-
bustness properties employed for analysis of deep learning
models (Ruan et al., 2018), e.g. can be used to provide guar-
antees of non-existence of adversarial examples and for the
computation of classification ranges for sets of input points.
Unfortunately, exact direct computation of the maximum
and minimum class probabilities over compact sets is not
possible, as these would require providing an exact solu-
tion of a global non-linear optimisation problem, for which
no general method exists (Neumaier, 2004). We show how
upper and lower bounds for the maximum and minimum
classification probabilities of GPCs can be computed on
any given compact set T , and then iteratively refine these
bounds in a branch and bound algorithmic scheme until
convergence to the minimum and maximum is obtained.
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Specifically, through discretisation of the GPC latent space,
we derive an upper and lower bound on the GPC class con-
fidence output by analytically optimising a set of Gaussian
integrals, whose parameters depend upon extrema of the
GPC posterior mean and variance in T . We show how the
latter can be bounded by solving a set of convex quadratic
and linear programming problems, for which solvers are
readily available (Boyd & Vandenberghe, 2004). Finally,
for any given error tolerance ϵ > 0, we prove that there ex-
ists a discretisation of the latent space that ensures conver-
gence of the branch and bound to values ϵ-close to the ac-
tual maximum and minimum class probabilities in finitely
many steps. The method we propose is anytime (the bounds
provided are at every step an over-estimation of the actual
classification ranges over T , and can hence be used to pro-
vide guarantees) and ϵ-exact (the actual values are retrieved
in finitely many steps up to an error ϵ selected a-priori).

We apply our approach to analyse the robustness profile
of GPCs on a two-dimensional dataset, the SPAM dataset,
and a feature-based analysis of a binary and a 3-class sub-
set of the MNIST dataset. In particular, we compare the
guarantees computed by our method with the robustness
estimation approximated by adversarial attack methods for
GPCs (Grosse et al., 2018), discussing in which settings
the latter fails. Then, we analyse the effect of approximate
Bayesian inference techniques and hyper-parameter optimi-
sation procedures on the GPC adversarial robustness. In-
terestingly, across the three datasets analysed here, we ob-
serve that approximation based on Expectation Propagation
(Minka, 2001) gives more robust classification models than
Laplace approximation (Rasmussen, 2004), and that GPC
robustness increases with the number of training epochs.
Finally, we show how robustness can be used to perform in-
terpretability analysis of GPC predictions and compare our
methodology with LIME (Ribeiro et al., 2016).

In summary, the paper presents the following contributions:

• We develop a method for computing lower and upper
bounds for GPC probabilities over compact sets.

• We incorporate the bounding procedure in a branch
and bound algorithm, which we show to converge for
any specified error ϵ > 0 in finitely many steps.

• We empirically evaluate the robustness of a variety of
GPC models on three datasets, and demonstrate how
our method can be used for interpretability analysis.

Related Work Different notions of robustness have been
studied for GPs. For instance, Kim & Ghahramani (2008)
consider robustness against outliers, while Hernández-
Lobato et al. (2011) study robustness against labelling er-
rors. In this paper we consider robustness against local ad-
versarial perturbations, whose quantification for Bayesian
models is a problem addressed in several papers. Heuris-
tic approaches based on studying adversarial examples are

developed by Grosse et al. (2018); Feinman et al. (2017).
Formal guarantees are derived by Cardelli et al. (2019b);
Bogunovic et al. (2018); Smith et al. (2019) for GPs and
by Cardelli et al. (2019a) for Bayesian neural networks. In
particular, Cardelli et al. (2019b) derive an upper bound on
the probability that there exists a point in the neighbour-
hood of a given test point of a GP such that the prediction
of the GP on the latter differs from the initial test input
point by at least a specified threshold, whereas Bogunovic
et al. (2018) consider a GP optimisation algorithm in which
the returned solution is guaranteed to be robust to adversar-
ial perturbations with a certain probability. The problem
and the techniques developed in this paper are substantially
different from both of these. First, we consider a classi-
fication problem, for which the bounds in the referenced
papers cannot be applied due to its non-Gaussian nature.
Then, the approach in this paper gives stronger (i.e., non-
probabilistic) guarantees, is guaranteed to converge to any
given error ϵ > 0 in finite time, and is anytime (i.e., at any
time it gives sound upper and lower bounds of the classifi-
cation probabilities). This also differs from Cardelli et al.
(2019a), where the authors consider statistical guarantees
that require the solution of many non-linear optimisation
problems (one for each sample from the posterior distribu-
tion). Our approach also differs from that in Smith et al.
(2019), where the authors give guarantees for GPC in a bi-
nary classification setting under the L0-norm and only con-
sider the mean of the distribution in the latent space with-
out taking into account the uncertainty intrinsic in the GPC
framework. In contrast, our approach also considers multi-
class classification, takes into account the full posterior dis-
tribution and allows for exact (up to ϵ > 0) computation
under any Lp-norm.

2 BAYESIAN CLASSIFICATION WITH
GAUSSIAN PROCESSES

In this section we provide background for classification
with GP priors. We consider the classification problem as-
sociated to a datasetD = {(x, y) |x ∈ Rd, y ∈ {1, ..., C}}.
In GPC settings, given a test point x∗ ∈ Rd, the probability
assigned by the GPC to x∗ belonging to class c is given by:

πc(x∗|D) =
∫

σc(f̄)p(f(x∗) = f̄ |D)df̄ , (1)

where f(x∗) = [f1(x∗), . . . , fC(x∗)] is the latent func-
tion vector, σc : RC → [0, 1] is the likelihood function
for class c, p(f(x∗) = f̄ |D) is the predictive posterior dis-
tribution of the GP, and the integral is computed over the
C-dimensional latent space (Rasmussen, 2004). The vector
of class probabilities, Π(x∗) = [π1(x∗|D), ..., πC(x∗|D)],
can be computed by iterating Eqn (1) for each class c =
1, . . . , C. Of particular interest in applications is the binary
classification case (i.e., when C=2), which leads to a sig-
nificant simplification of the inference equations and tech-
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niques, while still encompassing important practical appli-
cations (Nickisch & Rasmussen, 2008) (notice that the bi-
nary case can be used for multi-class classification as well
by means of, e.g., one-vs-all classifiers (Rasmussen, 2004;
Hsu & Lin, 2002)). More specifically, in this case it suf-
fices to compute π(x∗|D) =

∫
σ(f̄)p(f(x∗) = f̄ |D)df̄ :=

π1(x∗|D), with f being a univariate latent function and set-
ting π2(x∗|D) := 1−π(x∗|D). In other words, when C =
2 the latent space of the GPC model is one-dimensional.

Unfortunately, even under the GP prior assumption, the
posterior distribution in classification settings, p(f(x∗) =
f̄ |D), is non-Gaussian and intractable (Rasmussen, 2004).
Several approximation methods have been developed to
perform GPC inference, either by sampling (e.g. Markov
Chain Monte Carlo), or by developing suitable analytic
approximations of the posterior distribution. In this work
we focus on Gaussian analytic approximations, that is, we
employ GPC methods that perform approximate inference
of p(f(x∗) = f̄ |D) by estimating a Gaussian distribution
q(f(x∗) = f̄ |D) = N (f̄ |µ(x∗),Σ(x∗)). The latter is
then used at inference time in Eqn (1) in place of the exact
posterior p(f(x∗) = f̄ |D)1. In particular, in Section 6 we
will give experimental results for when q is derived using
either Laplace approximations (Williams & Barber, 1998)
or Expectation Propagation (EP) (Minka, 2001). However,
we remark that the methods presented in this paper do not
depend on the particular Gaussian approximation method
used and can be trivially extended to the case where q is a
mixture of Gaussian distributions.

3 ADVERSARIAL ROBUSTNESS

Given a GPC model trained on a dataset D and a test point
x∗, we are interested in quantifying the adversarial robust-
ness of the GPC in a neighborhood of x∗. To do so, for
a compact set T and a class c ∈ {1, . . . , C}, we pose the
problem of computing the minimum and the maximum that
the GPC assigns to the probability of class c in T , that is:

πc
min(T ) :=min

x∈T
πc(x|D) πc

max(T ) :=max
x∈T

πc(x|D) (2)

The computation of the classification extrema in T allows
us to determine the reachable interval of class probabilities
over T . In the case in which T is defined as a neighborhood
around a test point x∗, Eqn (2) provides a quantification of
the local GPC robustness at x∗, that is, against local adver-
sarial perturbations. Unfortunately, exact computation of
Eqn (2) involves the solution of two non-linear optimisa-
tion problems, for which no general solution method exists.
Nevertheless, in Section 4 we derive a branch and bound
scheme for the anytime computation of the classification
ranges of Eqn (2) that is guaranteed to converge in finitely
many iterations up to any arbitrary error tolerance ϵ > 0.

1With an abuse of notation, in the rest of the paper we will
consider πc(x∗|D) =

∫
σc(f̄)q(f(x∗) = f̄ |D)df̄ .

In what remains of this section we discuss two notions of
adversarial robustness employed for the analysis of deep
learning models (Ruan et al., 2018) that arise as particular
instances of Eqn (2), which will be investigated in the ex-
perimental results discussed in Section 6.

Definition 1. (Adversarial Local Robustness) Let T ⊆ Rd

and x∗ ∈ T. Then, for δ > 0 we say that the classification
of x∗ is δ−robust in T iff ∀x ∈ T, |Π(x∗) − Π(x)| ≤ δ,
where | · | is a given norm.

If T is a γ−ball around a test point x∗, then robustness de-
fined in Definition 1 allows one to quantify how much, in
the worst case, the prediction in x∗ can be affected by in-
put perturbations of radius no greater than γ. Adversarial
examples are defined in terms of invariance of the classifi-
cation in T w.r.t. the label of a test point x∗. For the case of
the Bayesian optimal classifier, this is defined as follows.

Definition 2. (Adversarial Local Safety) Let T ⊆ Rd

and x∗ ∈ T . Then, we say that the classification of x∗

is safe in T iff ∀x ∈ T, argmaxc∈{1,...,C} π
c(x|D) =

argmaxc∈{1,...,C} π
c(x∗|D).

Adversarial local safety establishes whether adversarial ex-
amples exist in T , yielding formal guarantees against ad-
versarial attacks for GPCs. If we again consider T to be
a γ−ball around x∗, the satisfaction of Definition 2 guar-
antees that it is not possible to cause a misclassification by
perturbing x∗ by a magnitude of up to γ2.

4 BOUNDS FOR BINARY
CLASSIFICATION

In this section we show how the classification ranges of a
two-class GPC model in any given compact set T ⊆ Rd

can be computed up to any arbitrary precision ϵ > 0. As
explained in Section 2, the latent space of the GPC model
is one-dimensional in this case, and we thus omit the class
superscript c in this section. The extension to the multi-
class scenario is then described in Section 5. Proofs for the
results stated are given in the Supplementary Material.

Outline of Approach An outline of our approach is de-
picted in Figure 1 for the computation of πmin(T ) over a
one-dimensional set T plotted along the x-axis (the method
for the computation of πmax(T ) is analogous). For any
given region T we aim to compute lower and upper bounds
on both πmin(T ) and πmax(T ), that is, we compute real val-
ues πL

min(T ), π
U
min(T ), π

L
max(T ) and πU

max(T ) such that:

πL
min(T ) ≤πmin(T ) ≤ πU

min(T ) (3)

πL
max(T ) ≤πmax(T ) ≤ πU

max(T ). (4)

2In the multiclass case to check if x∗ is safe in T , for
c̄ = argmaxc∈{1,...,C} π

c(x∗|D), we need to check that
minx∈T

(
πc̄(x|D)−maxc ̸=c̄ π

c(x|D)
)
> 0, which can be com-

puted with a trivial extension of the results presented in this paper.
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Figure 1: Left: Computation of upper and lower bounds on πmin(T ), i.e. the minimum of the classification range on the
search region T . Right: The search region is repeatedly partitioned into sub-regions according to Algorithm 1 (only first
partitioning visualised), reducing the gap between best lower and upper bounds until convergence (up to ϵ) is reached.

In order to do so, we compute a lower and an upper
bound function (the lower bound function is depicted with
a dashed red curve in Figure 1) to the GPC output (solid
blue curve) in the region T . We then find the minimum
of the lower bound function, πL

min(T ) (shown in the plot),
and the maximum of the upper bound function, πU

max(T )
(not shown). Then, valid values for πU

min(T ) and πL
max(T )

can be computed by evaluating the GPC on any point in T
(a specific πU

min(T ) is depicted in Figure 1). Finally, we
iteratively refine the lower and upper bounds computed in
T with a branch and bound algorithm. Namely, the region
T is recursively subdivided into sub-regions, for which we
compute new (tighter) bounds, until these converge up to a
desired tolerance ϵ > 0.

Computation of Bounds In this paragraph we show how to
compute πU

max(T ), an upper bound on the maximum, and
πL
min(T ), a lower bound on the minimum of the GPC out-

puts. We work on the assumption that the likelihood func-
tion σ(f) is a monotonic, non-decreasing, and continuous
function of the latent variable (notice that this is satisfied by
commonly used likelihood functions, e.g., logistic and pro-
bit (Kim & Ghahramani, 2006)). In the following proposi-
tion we show how the GPC output can be upper- and lower-
bounded in T by a summation of Gaussian integrals.

Proposition 1. Let S = {Si | i ∈ {1, ...N}} be a partition
of R (the latent space) in a finite set of intervals. Call ai =
inf f̄∈Si

f̄ and bi = supf̄∈Si
f̄ . Then, it holds that:

πmin(T ) ≥
N∑
i=1

σ(ai)min
x∈T

∫ bi

ai

N (f̄ |µ(x),Σ(x))df̄ (5)

πmax(T ) ≤
N∑
i=1

σ(bi)max
x∈T

∫ bi

ai

N (f̄ |µ(x),Σ(x))df̄ , (6)

where µ(x) and Σ(x) are mean and variance of the predic-
tive posterior q(f(x) = f̄ |D).

Proposition 1 guarantees that the GPC output in T can
be bounded by solving N optimisation problems. Each
of these problems seeks to find the mean and variance

that maximise or minimise the integral of a Gaussian over
T . This has been studied by Cauchi et al. (2019) for
variance-independent points and is generalised in the fol-
lowing proposition. We introduce the following notation
for lower and upper bounds on mean and variance in T :

µL
T ≤ min

x∈T
µ(x) µU

T ≥ max
x∈T

µ(x) (7)

ΣL
T ≤ min

x∈T
Σ(x) ΣU

T ≥ max
x∈T

Σ(x), (8)

Then by inspection of the derivatives of the integrals in
Eqns (5) and (6) the following proposition follows.

Proposition 2. Let µm = a+b
2 and Σm(µ) =

(µ−a)2−(µ−b)2

2 log µ−a
µ−b

. Then it holds that:

max
x∈T

∫ b

a

N (f̄ |µ(x),Σ(x))df̄ ≤
∫ b

a

N (f̄ |µ,Σ)df̄

=
1

2

(
erf

(
µ− a√
2Σ

)
− erf

(
µ− b√
2Σ

))
(9)

min
x∈T

∫ b

a

N (f̄ |µ(x),Σ(x))df̄ ≥
∫ b

a

N (f̄ |µ,Σ)df̄

=
1

2

(
erf

(
µ− a
√
2Σ

)
− erf

(
µ− b
√
2Σ

))
(10)

where: µ = argminµ∈[µL
T ,µU

T ] |µm − µ| and Σ

is equal to ΣL
T if µ ∈ [a, b], otherwise Σ =

argminΣ∈[ΣL
T ,ΣU

T ] |Σm(µ)− Σ|. Analogously, for the min-
imum we have: µ = argmaxµ∈[µL

T ,µU
T ] |µm − µ| and

Σ = argminΣ∈{ΣL
T ,ΣU

T }[erf(b|µ,Σ)− erf(a|µ,Σ)].

That is, given lower and upper bounds for the a-posteriori
mean and variance in T , Proposition 2 allows us to ana-
lytically bound the N optimisations of Gaussian integrals
posed by Equations (5) and (6). Through this, we can com-
pute values for πL

min(T ) and πU
max(T ), which satisfy the

LHS of Eqn (3) and the RHS of Eqn (4). Furthermore, note
that by definition of πmin(T ) and πmax(T ), we have that,
for every x̄ ∈ T , setting πU

min(T ) = πL
max(T ) = π(x̄)

provides values which satisfy the RHS of Eqn (3) and the
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LHS of Eqn (4) (in the Supplementary Material we discuss
how to pick values for x̄ to speed up convergence). De-
tails on the computation of bounds for the a-posteriori mean
and variance are discussed in the Supplementary Material.
Interestingly, when the (scaled) probit function is chosen
for the likelihood, σ(f), then the inference integral over
q(f(x∗) = f̄ |D) can be expressed in closed form (Ras-
mussen, 2004), which leads to a simplification of Proposi-
tion 1. Details are given in the Supplementary Material.

Branch and Bound Algorithm In this paragraph we im-
plement the bounding procedure into a branch and bound
algorithm and prove convergence up to any a-priori spec-
ified ϵ > 0. We summarise our method for computation
of πmin(T ) in Algorithm 1, which we now briefly describe
(analogous arguments hold for πmax(T )). After initialis-
ing πL

min(T ) and πU
min(T ) to trivial values and initialising

the exploration regions stack R to the singleton {T}, the
main optimisation loop is entered until convergence (lines
2–9). Among the regions in the stack, we select the region
R with the most promising lower bound (line 3), and refine
its lower bounds using Propositions 1 and 2 (lines 4–5) as
well as its upper bounds through evaluation of points in R
(line 6). If further exploration of R is necessary for con-
vergence (line 7), then the region R is partitioned into two
smaller regions R1 and R2, which are added to the regions
stack and inherit R’s bound values (line 8). Finally, the
freshly computed bounds local to R ⊆ T are used to up-
date the global bounds for T (line 9). Namely, πL

min(T ) is
updated to the smallest value among the πL

min(R) values for
R ∈ R, while πU

min(T ) is set to the lowest observed value
yet explicitly computed in line 6.

Algorithm 1 Branch and bound for πmin(T )

Input: Input space subset T ; error tolerance ϵ > 0; latent
mean/variance functions µ(·) and Σ(·) of q(f(x) = f̄ |D)
Output: Lower and upper bounds on πmin(T ) with
πU
min(T )− πL

min(T ) ≤ ϵ

1: Initialisation: Stack of regions R ← {T};
πL
min(T )← −∞; πU

min(T )← +∞
2: while πU

min(T )− πL
min(T ) > ϵ do

3: Select region R ∈ R with lowest bound πL
min(R)

and delete it from stack
4: Find bounds [µL

R, µ
U
R] and [ΣL

R,Σ
U
R] for latent

mean and variance functions over R
5: Compute πL

min(R) from [µL
R, µ

U
R] and [ΣL

RΣ
U
R]

using Propositions 1 and 2
6: Find πU

min(R) by evaluating GPC in a point in R
7: if πU

min(R)− πL
min(R) > ϵ then

8: Split R into two sub-regions R1, R2, add them
to stack and use πL

min(R), πU
min(R) as initial

bounds for both sub-regions
9: Update πL

min(T ) and πU
min(T ) with current best

bounds found
10: return [πL

min(T ), π
U
min(T )]

For our approach to work, it is crucial that Algorithm 1 con-
verges, i.e. that the loop of lines 2− 9 terminates. Given an
a-priori specified threshold ϵ, Theorem 1 ensures that there
exists a latent space discretisation such that the bounding er-
ror (i.e. the difference between the upper and lower bound)
vanishes. Thanks to the properties of branch and bound al-
gorithms (Balakrishnan et al., 1991), this guarantees that
our method converges in finitely many iterations.

Theorem 1. Assume µ : Rd → R and Σ : Rd → R are
Lipschitz continuous in T ⊆ Rm. Then, for ϵ > 0, there
exists a partition of the latent space S and r > 0 such that,
for every R ⊆ T of side length of less than r, it holds that
|πU

min(R)− πL
min(R)| ≤ ϵ and |πU

max(R)− πL
max(R)| ≤ ϵ.

Computational Complexity Proposition 2 implies that
the bounds in Proposition 1 can be obtained in O(N), with
N being the number of intervals the real line is being par-
titioned into (this scales like 1

ϵ , as discussed in the proof
of Theorem 1). Computation of µL

T and µU
T is performed

in O(|D|), while obtaining ΣU
T involves the solution of a

convex quadratic problem in d + |D| variables, where d is
the dimension of the input space. Solving for ΣL

T requires
the solution of 2|D| + 1 linear programming problems in
d+|D| dimensions. Refining through branch and bound has
a worst-case cost exponential in the number of non-trivial
dimensions of T . The CPU time required for convergence
of our method is analysed in the Supplementary Material.

5 MULTICLASS CLASSIFICATION

In this section we show how the results for binary classifi-
cation can be generalised to the multi-class case. Given a
class index c ∈ {1, . . . , C}, we are interested in computing
upper and lower bounds on πc(x|D) for every x ∈ T . In
order to do so, we extend Proposition 1 to the multi-class
case in Proposition 3, and show that the resulting multi-
dimensional integrals can be reduced to the two-class case
by marginalisation (Proposition 4).

Proposition 3. Let S = {Si | i ∈ {1, ...N}} be a finite
partition of RC (the latent space). Then, for c ∈ {1, ..., C}:

πc
min(T ) ≥

N∑
i=1

min
x∈Si

σc(x)min
x∈T

∫
Si

N (f̄ |µ(x),Σ(x))df̄

πc
max(T ) ≤

N∑
i=1

max
x∈Si

σc(x)max
x∈T

∫
Si

N (f̄ |µ(x),Σ(x))df̄

Proposition 3 guarantees that, for all x ∈ T , πc(x|D) can
be upper- and lower-bounded by solving 2N optimisation
problems. In Proposition 4, we show that upper and lower
bounds for the integral of a multi-dimensional Gaussian dis-
tribution, such as those appearing in Proposition 3, can be
obtained by optimising uni-dimensional integrals over both
the input and latent space. In what follows, we call µi:j(x)
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the subvector of µ(x) containing only the components from
i to j, and similarly we define Σi:k,j:l(x), the submatrix of
Σ(x) containing rows from i to k and columns from j to l.

Proposition 4. Let S =
∏C

i=1[k
1
i , k

2
i ] be an axis-parallel

hyper-rectangle. For i ∈ {1, . . . , C − 1} and f ∈ RC−1−i,
define I := i+ 1 : C and:

µf
i (x) = µi(x)− Σi,I(x)Σ

−1
I,I(f − µI(x))

Σf
i (x) = Σi,i(x)− Σi,I(x)Σ

−1
I,IΣ

T
i,I(x).

Let Si+1 =
∏C

j=i+1[k
1
j , k

2
j ], then we have that:

max
x∈T

∫
S

N (z|µ(x),Σ(x)) ≤ max
x∈T

∫ k2
C

k1
C

N (z|µC(x),

ΣC,C(x))dz

C−1∏
i=1

max
x∈T

f∈Si+1

∫ k2
i

k1
i

N (z|µf
i (x),Σ

f
i (x))dz

min
x∈T

∫
S

N (z|µ(x),Σ(x)) ≥ min
x∈T

∫ k2
C

k1
C

N (z|µC(x),

ΣC,C(x))dz

C−1∏
i=1

min
x∈T

f∈Si+1

∫ k2
i

k1
i

N (z|µf
i (x),Σ

f
i (x))dz.

Proposition 4 reduces the computation of the bounds for
the multi-class case to a product of extrema of univariate
Gaussian distributions for which Proposition 2 can be iter-
atively applied. Analogously to what we discussed for the
binary case, the resulting bound can be refined through a
branch and bound algorithm to ensure convergence up to
any desired tolerance ϵ > 0. Notice that the computational
complexity for the multi-class case is exponential in C.

6 EXPERIMENTAL RESULTS

We employ our methods to experimentally analyse the ro-
bustness profile of GPC models in adversarial settings3.
We give results for three datasets: (i) Synthetic2D, gen-
erated by shifting a two-dimensional standard-normal ei-
ther along the first dimension (class 1) or the second one
(class 2); (ii) the SPAM dataset (Dua & Graff, 2017); (iii) a
subset of the MNIST dataset (LeCun, 1998) with classes
3 and 8 (MNIST38) and a subset with classes 3, 5 and
8 (MNIST358). For scalability, results for MNIST38 are
given for feature-level analysis (as done in Ruan et al.
(2018) for deep networks). Namely, we analyse either
salient patches detected by SIFT (Lowe, 2004) or we se-
lect the relevant pixels corresponding to the shortest GP
length-scales.

6.1 Adversarial Local Safety

We depict the local adversarial safety results for four points
selected from the Synthethic2D, SPAM, and MNIST38

3Code: https://github.com/andreapatane/check-GPclass
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Figure 2: First row: Contour plot and test points for Syn-
thetic2D (left); projected contour plot and test points for 2
dimensions of SPAM (right, dimensions 2 and 8 as selected
by L1-penalised logistic regression); red dots mark selected
test points. Second row: Safety analysis for the two se-
lected test point. Shown are the upper and lower bounds
for tolerance ϵ = 0.02 on πmax(T ) (solid and dashed blue
curves) and the GPFGS adversarial attack (pink curve).

datasets in Figures 2 and 3. To this end, we set T ⊆ Rd

to be a L∞ γ−ball around the chosen test point and itera-
tively increase γ (x-axis in the second row plots), checking
whether there are adversarial examples in T . Namely, if
the point is originally assigned to class 1 (respectively class
2) we check whether the minimum classification probabil-
ity in T is below the decision boundary threshold, that is,
if πmin(T ) < 0.5 (resp. πmax(T ) > 0.5). We compare
the values provided by our method (blue solid and dashed
line for class 2, green solid and dashed line for class 1)
with GPFGS (Grosse et al., 2018), a gradient based heuris-
tic attack for GPC (pink line). Naturally, as γ increases,
the neighborhood region T becomes larger, hence the confi-
dence for the initial class can decrease. Interestingly, while
our method succeeds in finding adversarial examples in
all cases shown (i.e. both the lower and upper bound on
the computed quantity cross the decision boundary), the
heuristic attack fails to find adversarial examples in the
Synthetic2D and in the MNIST38 case. This happens as
GPFGS builds on linear approximations of the GPC func-
tion, hence failing to find solutions to Eqn (2) when there
are non-linearities. In particular, near the point selected for
the Synthetic2D dataset (red dot in the contour plot) the gra-
dient of the GPC points away from the decision boundary.
Hence, no matter the value of γ, GPFGS will not go above
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Figure 3: First row: Sample of 8 from MNIST38 along
with 10 pixels selected by SIFT (left) and sample of 3
from MNIST38 along with the 3 pixels that have the short-
est lengthscales after GPC training (right). Second row:
Safety analysis for the two images. Shown are the up-
per and lower bounds for ϵ = 0.02 on either πmax(T ) or
πmin(T ) (solid and dashed blue resp. green curves) and the
GPFGS adversarial attack (pink curve).

0.5 in this case (pink line of the bottom-left plot). On the
other hand, for the SPAM dataset, the GPC model is locally
linear around the selected test point (red dot in top right
contour plot). Interestingly, the MNIST38 examples (Fig-
ure 3) provide results analogous to those of Synthetic2D.
While our method finds adversarial examples on both occa-
sions, GPFGS fails to do so (even with γ = 1.0 which is
the maximum region possible for normalised pixel values).

6.2 Adversarial Local Robustness

We evaluate the empirical distribution of δ-robustness (see
Definition 1) on 50 randomly selected test points for each
of the three datasets considered. That is, given T , we com-
pute δ = πmax(T )− πmin(T ). Notice that a smaller value
of δ implies a more robust model. In particular, we analyse
how the GPC model robustness is affected by the training
procedure used. We compare the robustness obtained when
using either the Laplace or the EP posterior approximations
technique. Further, we investigate the influence of the num-
ber of marginal likelihood evaluations (epochs) performed
during hyper-parameter optimisation on robustness.

Results are depicted in Figure 4, for 10, 40 and 100 hyper-
parameter optimisation epochs. Note that the analyses for
the MNIST38 samples are restricted only to the most in-

fluential SIFT feature, and thus δ values for MNIST38 are
smaller in magnitude than for the other two datasets (for
which all the input variables are simultaneously changed).
Interestingly, this empirical analysis demonstrates that
GPCs trained with EP are consistently more robust than
those trained using Laplace. In fact, for both Synthetic2D
and MNIST38, EP yields a model about 5 times more ro-
bust than Laplace. For SPAM, the difference in robust-
ness is the least pronounced. While Laplace approxima-
tion works by local approximations, EP calibrates mean
and variance estimation by a global approach, which gener-
ally results in a more accurate approximation (Rasmussen,
2004). We compare Laplace and EP posterior approxima-
tions with that made by Hamiltonian Monte Carlo (HMC)
- that is, as in Minka (2001) we use HMC as gold stan-
dard. The empirical distances found on the posterior ap-
proximation w.r.t. HMC are on average as follows (smaller
values are better): (i) Synthetic2D - Laplace: 1.04, EP:
0.14; (ii) SPAM - Laplace: 0.35, EP: 0.32; (iii) MNIST38 -
Laplace: 0.52, EP: 0.32. This shows a correlation between
the robustness and the posterior approximation quality in
the datasets considered. These results quantify and con-
firm for GPCs that a more refined estimation of the poste-
rior is beneficial for model adversarial robustness (Cardelli
et al., 2019a). Interestingly, the values of δ decrease as
the number of training epochs increases, thus robustness
improves with training epochs. This is in contrast to what
is observed in the deep learning literature (Tsipras et al.,
2018). More training in the Bayesian settings may imply
better calibration of the latent mean and variance function
to the observed data.

6.3 Interpretability Analysis

Finally, we show how adversarial robustness can be used
for interpretability analysis for GPC models. We provide
comparison with pixel-wise LIME (Ribeiro et al., 2016),
a model-agnostic interpretability technique that relies on
local linear approximations. Given a test point x∗ consider
the one-sided intervals T i

γ(x
∗) = [x∗, x∗ + γei] (with ei

being the vector of 0s except for 1 at dimension i). We
compute how much the maximum and minimum values can
change over the one-sided intervals in both directions:

∆i
γ(x

∗) =
(
πmax(T

i
γ(x

∗))− πmax(T
i
−γ(x

∗))
)

+
(
πmin(T

i
γ(x

∗))− πmin(T
i
−γ(x

∗))
)
.

Intuitively, this provides a non-linear generalisation of nu-
merical gradient estimation (more details in Supplementary
Material) which is close to the metric used in Ribeiro et al.
(2016) as γ shrinks to 0. While ∆i

γ(x
∗) is local to a given

x∗, following LIME, global interpretability information is
obtained by averaging local results over M test points, i.e.
by computing ∆i

γ = 1
M

∑M
j=1 ∆

i
γ(x

j).
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Figure 4: Boxplots for the distribution of robustness on the three datasets, comparing Laplace and EP approximation.

Figure 5: First row: Samples selected from MNIST358.
Second row: Interpretability metric estimation using our
method. Third row: Results obtained using LIME.

Local Interpretability for MNIST358 Figure 5 shows
the results for three samples selected from MNIST358
(top row), with the heat maps depicting the results of
our method (second row) and those for LIME (third row,
greyed out pixels are marked as irrelevant by LIME). The
colour gradient varies from red (positive impact, pixel
value increase causing increased class probability of shown
digit) to blue (negative impact, pixel value increase decreas-
ing the class probability). For digit 3, our method obtains
for example a contiguous blue patch on the left. Increasing
the values of these pixels would modify the 3 into an 8. In-
deed, when whitening the pixels of the blue patch, the class
3 probability assigned by the model decreases from 0.58
to 0.40. Similarly, for digit 5, our methods identify a blue
patch that would change the 5 into an 8 and again the GPC
model indeed lowers its class 5 probability when the patch
is whitened. Similarly, for digit 8, our method identifies
a blue patch of 3 pixels towards the top left, which would
turn it into something resembling digit 3 if whitened.

Global Interpretability for the Binary Datasets We
perform global interpretability analysis on the GPC models
trained on the Synthetic2D and SPAM datasets, using 50
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Figure 6: Global feature sensitivity analysed by LIME and
our metric ∆i

γ . All values normed to unit scale for better
comparison. Top: Results for Synthetic2D dataset mapped
out on plane. Bottom: Results for SPAM dataset.

random test points. The results are shown in Figure 6. For
Synthetic2D (top row), LIME suggests that a higher prob-
ability of belonging to class 1 (depicted as the direction of
the arrow in the plot) corresponds to lower values along di-
mension 1 and higher values along dimension 2. As can
be seen in the corresponding contour plot in Figure 2 (top
left), the exact opposite is true however. LIME, being built
on linearity approximations, fails to take into account the
global behaviour of the GPC. When using a small value of
γ our approach obtains similar results to LIME. However,
with γ = 2.0 the global relationship between input and out-
put values is correctly captured. For SPAM, on the other
hand (Figure 6, bottom), due to linearity of the dataset and
GPC, a local analysis correctly reflects the global picture.

7 CONCLUSION

We presented a method for computing, for any compact set
of input points, the class probability range of a GPC model
across all points in that set, up to any precision ϵ > 0.
This allows us to analyse robustness and safety against ad-
versarial attacks, which we have demonstrated on multiple
datasets and approximate Bayesian inference techniques.
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Supplementary Material: ADVERSARIAL
ROBUSTNESS GUARANTEES FOR
CLASSIFICATION WITH GAUSSIAN
PROCESSES

In the first Section of this Supplementary Material we
present the proof of Propositions 1 and 2, as well as Theo-
rem 1. Further technical results concerning multiclass clas-
sification are treated in Section B. In Section C we detail
the case of binary classification using the probit likelihood
function. In Section D we detail our approach for comput-
ing a lower bound of the predictive variance and mention
how promising candidate points for the GPC bounding can
be computed. We empirically analyse the computational
complexity of the branch and bound methodology in a run-
time analysis in Section E. In Section F we describe the
datsets used and detail the experimental settings. Finally,
in Section G, details for the interpretability metric we use
in the experimental section are given.

A PROOFS FOR BINARY
CLASSIFICATION BOUNDS

A.1 Proof of Proposition 1

Proof. We detail the proof for minx∈T π(x|D). The max
case follows similarly.

min
x∈T

π(x|D)

(By definition)

=min
x∈T

∫ +∞

−∞
σ(f̄)q(f(x) = f̄ |D)df̄

(By additivity of integrals)

=min
x∈T

N∑
i=1

∫ bi

ai

σ(f̄)q(f(x) = f̄ |D)df̄

(By monotonicity of σ and non-negativity of q)

≥min
x∈T

N∑
i=1

∫ bi

ai

σ(ai)q(f(x) = f̄ |D)df̄

(By definition of minimum and of q)

≥
N∑
i=1

σ(ai)min
x∈T

∫ bi

ai

N (f̄ |µ(x),Σ(x))df̄

A.2 Proof of Proposition 2

Proof. We provide the proof for the min case, similar argu-
ments hold for the max. By definition of µL

T , µU
T , ΣL

T , ΣU
T

we have that:

min
x∈T

∫ b

a

N (f̄ |µ(x),Σ(x))df̄ ≥

min
µ∈[µL

T ,µU
T ]

Σ∈[ΣL
T ,ΣU

T ]

∫ b

a

N (f̄ |µ,Σ)df̄ =

1

2
min

µ∈[µL
T ,µU

T ]

Σ∈[ΣL
T ,ΣU

T ]

(
erf

(
µ− a√
2Σ

)
− erf

(
µ− b√
2Σ

))
:=

1

2
min

µ∈[µL
T ,µU

T ]

Σ∈[ΣL
T ,ΣU

T ]

Φ(µ,Σ).

By looking at the partial derivatives we have that:

∂Φ(µ,Σ)

∂µ
=

√
2√
πΣ

(
e−

(µ−b)2

2Σ − e−
(µ−a)2

2Σ

)
≥ 0⇔ µ ≤ a+ b

2
=: µm

and that if µ ̸∈ [a, b]:

∂Φ(µ,Σ)

∂Σ
=

1√
2πΣ3

(
(µ− bi)e

− (µ−bi)
2

2Σ2 − (µ− ai)e
− (µ−ai)

2

2Σ2

)
≥ 0

⇔ Σ ≤ (µ− a)2 − (µ− b)2

2 log µ−a
µ−b

:= Σm(µ)

otherwise the last inequality has no solutions. As such µm

and Σm will correspond to global maximum wrt to µ and
Σ respectively. As Φ is symmetric wrt µm we have that the
minimum value wrt to µ is always obtained for the point fur-
thest away from µc, that is: µ = argmaxµ∈[µL

T ,µU
T ] |µm −

µ|. The minimum value wrt to Σ will hence be either for
ΣL

T or ΣU
T , that is Σ = argminΣ∈{ΣL

T ,ΣU
T } Φ(µ,Σ).

A.3 Proof of Theorem 1

Proof. We consider the min case. The max case follows
similarly.

In order to show the convergence of the branch and bound,
we need to show that for any test point x there exists r > 0
and a partition of the latent space S = {Si, i = {1, ..., N}}
such that for the interval I = [x− rI, x+ rI] we have that
for any x̄ ∈ I

|π(x̄|D)−
N∑
i=1

σ(ai)min
x∈I

∫ bi

ai

N (f̄ |µ(x),Σ(x))df̄ | ≤ ϵ.

In order to do that, we first observe that by the Lipschitz
continuity of mean and variance we have that for x1, x2 ∈
I , it holds that

|µ(x1)− µ(x2)| ≤ Kµr
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|Σ(x1)− Σ(x2)| ≤ KΣr,

for certain Kµ,KΣ > 0. Now, for Si ∈ S,
consider xi such that

∫ bi
ai
N (f̄ |µ(xi),Σ(xi))df̄ =

minx∈I

∫ bi
ai
N (f̄ |µ(x),Σ(x))df̄ . Further, due to the mono-

tonicity and continuity of σ, we can consider a uniform dis-
cretisation of the y-axis for σ in N intervals. That is, for all
Si ∈ S , we have that σ(bi) = σ(ai)+

1
N . At this point, for

any x̄ ∈ I the following calculations follow

|π(x̄|D)−
N∑
i=1

σ(ai)

∫ bi

ai

N (f̄ |µ(xi),Σ(xi))df̄ | (11)

(By Definition)

=|
∫

σ(f̄)N (f̄ |µ(x̄),Σ(x̄))df̄−

N∑
i=1

σ(ai)

∫ bi

ai

N (f̄ |µ(xi),Σ(xi))df̄ | (12)

(By additivity of integral and re-ordering terms)

=|
N∑
i=1

( ∫ bi

ai

σ(f̄)N (f̄ |µ(x̄),Σ(x̄))df̄ −

∫ bi

ai

σ(ai)N (f̄ |µ(xi),Σ(xi))df̄
)
| (13)

(As for any f̄ ∈ Si, σ(ai) ≤ σ(fi) ≤ σ(ai) +
1

N
)

≤|
N∑
i=1

( ∫ bi

ai

(σ(ai) +
1

N
)N (f̄ |µ(x̄),Σ(x̄))−

σ(ai)N (f̄ |µ(xi),Σ(xi))df̄
)
|

(14)

(By Triangle Inequality)

≤|
N∑
i=1

∫ bi

ai

1

N
N (f̄ |µ(x̄),Σ(x̄))df̄ |+

|
N∑
i=1

(
σ(ai)

∫ bi

ai

N (f̄ |µ(x̄),Σ(x̄))−

N (f̄µ(xi),Σ(xi))df̄
)
| (15)

(By Re-ordering terms and Triangle Inequality)

≤| 1
N

∫
N (f̄ |µ(x̄),Σ(x̄))df̄ |

+

N∑
i=1

σ(ai)|
∫ bi

ai

N (f̄ |µ(x̄),Σ(x̄))−

N (f̄µ(xi),Σ(xi))df̄ | (16)
(By properties of integrals and σ(f) ∈ [0, 1])

≤ 1

N
+

N∑
i=1

|
∫ bi

ai

(N (f̄ |µ(x̄),Σ(x̄))−

N (f̄ |µ(xi),Σ(xi)))df̄ | (17)

Now, as |µ(x̄),−µ(xi), | ≤ Kµr and |Σ2(x̄) − Σ2(xi)| ≤

KΣr, we have that as r → 0 both mean and variance con-
verge to the same value. Hence, this implies that for each
Si ∈ S

lim
r→0

( ∫ bi

ai

N (f̄ |µ(x̄),Σ(x̄))df̄ −∫ bi

ai

N (f̄ |µ(xi),Σ(xi))df̄
)
= 0.

As a consequence, for any ϵ > 0, we can choose N = ⌈ 2ϵ ⌉
and then select r such that the second term in Eqn (17) is
bounded by ϵ

2 .

B BOUNDS FOR MULTICALSS
CLASSIFICATION

Proof of Proposition 3

Proof. We detail the proof for minx∈T πc(x|D). The max
case follows similarly.

min
x∈T

πc(x|D)

(By definition)

= min
x∈T

∫
σc(f̄)q(f(x) = f̄ |D)df̄

(By additivity of integral)

= min
x∈T

N∑
i=1

∫
Si

σc(f̄)q(f(x) = f̄ |D)df̄

(Because q is non-negative)

≥ min
x∈T

N∑
i=1

∫
Si

min
y∈Si

σc(y)q(f(x) = f̄ |D)df̄

(By definition of infimum)

≥
N∑
i=1

min
y∈Si

σc(y)min
x∈T

∫
Si

q(f(x) = f̄ |D)df̄

(By Definition of q)

=

N∑
i=1

min
y∈Si

σc(y)min
x∈T

∫
Si

N (f̄ |µ(x),Σ(x))df̄

Proposition 3 in the main text implies that if we can com-
pute infimum and supremum of the softmax over a set of
the latent space (shown in Lemma 1) and the mean and co-
variance matrix that maximise a Gaussian integral (shown
in Proposition 4), then upper and lower bounds on πmin(T )
and πmax(T ) can be derived.

Lemma 1. Let S ⊂ R|C| be an axis-parallel hyper-
rectangle. Call fmax = argmaxf∈S σc(f) and fmin =
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argminf∈S σc(f). Assume σ is the softmax function. Then,
fmax and fmin are vertices of S.

Proof. S is an axis-parallel hyper-rectangle. As a conse-
quence, it can be written as intersection of constraints of
the form −fi ≤ −ki,1 and fi ≤ ki,2, where fi is the i-th
component of vector f . Hence, the optimisation problem
for the maximisation case (minimisation case is equivalent)
can be rewritten as follows:

maxσc(f)

such that ∀i ∈ {1, ..., |C|} − fi ≤ −ki,1, fi ≤ ki,2.

In order to solve this problem we can apply the Karush-
Kuhn-Tucker (KKT) conditions. Being the constraints in-
dependent of f , the KKT conditions imply that in order
to conclude the proof we just need to show that for all
f ∈ S, c ∈ {1, ..., |C|}, dσc(f)

dfc
̸= 0. This is shown in

what follows.

For f ∈ Rn and c ∈ {1, ...n}We have

σc(f) =
exp(fc)∑C
j=1 exp(fj)

.

Then, we obtain

dσc(f)

dfc
=

exp(fc)(
∑

j ̸=c exp(fj))

(
∑C

j=1 exp(fj))
2

,

while for i ̸= c we have

dσc(f)

fi
= − exp(fc) exp(fi)

(
∑C

j=1 exp(fj))
2
.

This implies that for f ∈ Rn and i ̸= c we always have

dσc(f)

dfc
> 0

dσc(f)

dfi
< 0.

Note that in Lemma 1 we assumed that S is an hyper-
rectangle. However, the lemma can be trivially extended
to more general sets given by the intersection of arbitrarily
many half-spaces generated by hyper-planes perpendicular
to one of the axis.

The following Lemma is needed to prove Proposition 4.

Lemma 2. Let X and Y be random variables with joint
density function f . Consider measurable sets A and B.
Then, it holds that

P (X ∈ A|Y ∈ B) ≤ sup
y∈B

P (X ∈ A|Y = y).

Proof.

P (X ∈ A|Y ∈ B)

=
P (X ∈ A ∧ Y ∈ B)

P (Y ∈ B)

=

∫
x∈A

∫
y∈B

f(X = x ∧ Y = y)dxdy

P (Y ∈ B)

=

∫
x∈A

∫
y∈B

f(X = x|Y = y)f(Y = y)dxdy

P (Y ∈ B)

≤
∫
x∈A

∫
y∈B

supȳ∈B f(X = x|Y = ȳ)f(Y = y)dxdy

P (Y ∈ B)

=

∫
x∈A

supȳ∈B f(X = x|Y = ȳ)dx
∫
y∈B

f(Y = y)dy

P (Y ∈ B)

=
supy∈B P (X ∈ A|Y = y)P (X ∈ B)

P (Y ∈ B)

= sup
y∈B

P (X ∈ A|Y = y),

B.1 Proof of Proposition 4.

We consider the supremum case. The infimum follows sim-
ilarly. Let y(x) be a normal random variable with mean
µ(x) and covariance matrix Σ(x). Then, we have

sup
x∈T

∫
S

N (f̄ |µ(x),Σ(x))df̄

= sup
x∈T

P (y(x) ∈ S)

= sup
x∈T

P (∧Ci=1k
1
i ≤ yi(x) ≤ k2i )

= sup
x∈T

C∏
i=1

P (k1i ≤ yi(x) ≤ k2i | ∧Cj=i+1 k
1
j ≤ yj(x) ≤ k2j )

(By Lemma 2)

≤ sup
x∈T

C∏
i=1

sup
f∈Si+1

P (k1i ≤ yi(x) ≤ ki,2|

∧Cj=i+1 yj(x) = fj−i)

≤
C∏
i=1

sup
x∈T,f∈Si+1

P (k1i ≤ yi(x) ≤ k2i |

∧Cj=i+1 yj(x) = fj−i)

Notice that for each i ∈ {1, ..., C}, P (k1i ≤ yi(x) ≤
k2i | ∧Cj=i+1 yj(x) = fj−i) is the integral of a uni-
dimensional Gaussian random variable, as a Gaussian ran-
dom variable conditioned to a jointly Gaussian random vari-
able is still Gaussian.
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C BOUNDS FOR PROBIT BINARY
CLASSIFICATION

For the case that the likelihood σ is taken to be the probit
function, that is, σ(f̄) = Φ(λf̄) is the cdf of the univariate
standard Gaussian distribution scaled by λ > 0, it holds
that

π(x | D) = Φ

(
µ(x)√

λ−2 +Σ(x)

)
,

where µ(x) and Σ(x)are the mean and variance of
q(f(x) = f̄ |D) Bishop (2006). We can use this result to
derive analytic upper and lower bounds for Eqn (2) without
the need to apply Proposition 1, by relying on upper and
lower bounds for the latent mean and variance functions.
This can be obtained by direct inspection of the derivatives
of π(x|D).
Lemma 3. Let T ⊆ Rd. Then, we have that

Φ

(
µL
T√

λ−2 +Σ

)
≤ πmin(T ) (18)

and

πmax(T ) ≤ Φ

(
µU
T√

λ−2 +Σ

)
(19)

with Σ = ΣU
T if µL

T ≥ 0 and ΣL
T otherwise, while Σ = ΣL

T

if µU
T ≥ 0 and ΣU

T otherwise.

D BOUNDS ON LATENT MEAN AND
VARIANCE

In this section of the Supplementary Material we briefly re-
view how lower and upper bounds on the a-posteriori mean
and variance can be computed, and further show how this
give us candidate points for the evaluation of bounds (that
is line 6 in Algorithm 1 of the main paper).

We obtain bounds on latent mean and variance by apply-
ing the framework presented in Cardelli et al. (2019b) for
computation of µL

T , µ
U
T and ΣU

T , and subsequently extend
it for the computation of ΣL

T . Briefly, assuming continu-
ity and differentiability of the kernel function defining the
GPC covariance, it is possible to find linear upper and lower
bounds on the covariance vector, which can be propagated
through the inference formula for q(f(x) = f̄ |D). The
bounding functions obtained in this way can be analytically
optimised for µL

T and µU
T , while convex quadratic program-

ming is used to obtain ΣU
T (see Cardelli et al. (2019b) for

details). Finally, we solve the concave quadratic problem
that arises when computing ΣL

T by adapting methods in-
troduced in Rosen & Pardalos (1986), which reduces the
problem to the solution of 2|D| + 1 linear programming
problems. This is detailed in the following subsection.

As discussed in Section 4 in order to obtain πU
min(T ) and

πL
max(T ) it suffice to evaluate the GPC in any point inside

T . However, the more close πU
min(T ) and πL

max(T ) are to
πmin(T ) and πmax(T ) respectively, the more quicker will
be the convergence of the branch and bound algorithm (as
per line 7 in Algorithm 1 in the main paper). Notice that,
in solving the optimisation problems associated to µL

T , µ
U
T ,

ΣU
T and ΣL

T we obtain four extrema points in T on which
the GPC assume the optimal values a-posteriori mean and
variance values. As these points belong to T and provide
extreme points for the latent function they make promis-
ing candidates for the evaluation of πU

min(T ) and πL
max(T ).

Specifically in line 6 of Algorithm 1 (main paper), we eval-
uate the GPC on all four the extrema and select the one that
gives the best bound among them.

D.1 Lower Bound on Latent Variance

Let r(x) = [r1(x), . . . , rM (x)] be the vector of covari-
ance between a test point and the training set D with
|D| = M , and let R be the inverse covariance matrix
computed in the training set, and Σp be the (input inde-
pendent) self kernel value. By explicitly using the vari-
ance inference formula, we are interested in finding a
lower bound for: minx∈T

(
Σp − r(x)TRr(x)

)
= Σp +

minx∈T

(
−r(x)TRr(x)

)
. We proceed by introducing the

M auxiliary variables ri = ri(x), yielding a quadratic
objective function on the auxiliary variable vector r =
[r1, . . . , rM ], that is −rTRr. Analogously to what is done
in Cardelli et al. (2019b) we can compute two matrices Ar,
Ax and a vector b such that r = r(x) implies Arr+Axx ≤
b, hence obtaining the quadratic program:

min−rTRr (20)
Subject to: Arr+Axx ≤ b

rLi ≤ ri ≤ rUi i = 1, . . . ,M

xL
i ≤ xi ≤ xU

i i = 1, . . . ,m

whose solution provides a lower bound (and hence
a safe approximation) to the original problem
minx∈T

(
−r(x)TRr(x)

)
. Unfortunately, as R is pos-

itive definite, we have that −R is negative definite; hence
the problem posed is a concave quadratic program for
which a number of local optima may exist. As we are
instead dealing with worst-case scenario analyses, we
are actually interested in computing the global minimum.
This however is an NP-hard problem Rosen & Pardalos
(1986) whose exact solution would make a branch and
bound algorithm based on it impractical. Following the
methods discussed in Rosen & Pardalos (1986), we instead
proceed to compute a safe lower bound to that. The main
observation is that, being R symmetric positive definite,
there exist a matrix of eigenvectors U = [u1, . . . ,uM ]
and a diagonal matrix of the associated eigenvalues λi for
i = 1, . . . ,M , Λ such that R = UΛUT . We hence define
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r̂i = uT
1 ri for i = 1, . . . ,M to be the rotated variables and

compute their ranges [r̂Li , r̂
U
i ] by solution of the following

2M linear programming problems:

min /max uT
i ri

Subject to: Arr+Axx ≤ b

rLj ≤ ri ≤ rUj j = 1, . . . ,M

xL
j ≤ xi ≤ xU

j j = 1, . . . ,m.

Implementing the change of variables into Problem 20 we
obtain:

min−r̂TΛr̂
Subject to: Âr̂ r̂+Axx ≤ b

r̂Li ≤ r̂i ≤ r̂Ui i = 1, . . . ,M

xL
i ≤ xi ≤ xU

i i = 1, . . . ,m

where we set Â = AU . We then notice that r̂TΛr̂ =∑
i λir̂

2
i . By using the methods developed in Cardelli et al.

(2019b) it is straightforward to find coefficients of a linear
under approximations αi and βi such that: αi + βir̂i ≤
−λir̂

2
i for i = 1, . . . ,M . Defining β = [β1, . . . , βM ], and

α̂ =
∑M

i=1 αi we then have that the solution to the fol-
lowing linear programming problem provides a valid lower
bound to Problem 20 and can be hence used to compute a
lower bound to the latent variance:

min
(
α̂+ βT r̂

)
Subject to: Âr̂ r̂+Axx ≤ b

r̂Li ≤ r̂i ≤ r̂Ui i = 1, . . . ,M

xL
i ≤ xi ≤ xU

i i = 1, . . . ,m.

E RUNTIME ANALYSIS

In this section of the Supplementary Material we empiri-
cally analyse the CPU time required for convergence of Al-
gorithm 1 in the MNIST38 dataset. For the first 50 test
points and a γ−ball T of dimensionality d, we calculated
πmax(T ) up to a pre-specified error tolerance ϵ. We use
γ = 0.125 and γ = 0.25, corresponding to up to 50% of
the normalised input domain. All runtimes analysed below
were obtained on a MacBook Pro with a 2.5 Ghz Intel Core
i7 processor and 16GB RAM running on macOS Mojave
10.14.6.

E.1 Runtime Depending on Dimension of Compact
Subset.

First, we analysed the effect of increasing d, by fixing
ϵ = 0.025 and increasing the number of pixels selected
by SIFT to define T from 1 to 10. The results are shown
in terms of average runtime in Figure 7 on the left. For

γ = 0.25, we can observe the exponential behaviour of
the computational complexity in terms of number of dimen-
sions, as the runtime quickly grows from below 5 seconds
to almost 250 seconds beyond 7 dimensions. However, for
γ = 0.125 the exponential curve seems to be shifted fur-
ther to the right, as still for 10 dimensions Algorithm 1 ter-
minates in only a few seconds. Given that for γ = 0.125,
T spans up to 25% of the input domain (on the selected
pixels), we consider this quite fast.

E.2 Runtime Depending on Error Tolerance

Second, we analysed the effect of the error toler-
ance ϵ, by calculating the bounds for each ϵ ∈
{0.005, 0.01, 0.015, 0.02, 0.025} with the number of pix-
els selected by SIFT (i.e. d) fixed to 5. The results are
shown in Figure 7 on the right. The behaviour seems to be
roughly inversely exponential this time with lower error tol-
erance ϵ naturally demanding higher runtimes. In practice,
one would seldom expect to require precision of ϵ < 0.01
though, at which point Algorithm 1 still terminates in under
2 seconds on average even for γ = 0.25.

F EXPERIMENTAL SETTINGS

F.1 Datasets

Our synthetic two-dimensional dataset contains 1,200
points, of which 50 % belong to Class 1 and 50 % belong to
Class 2. The points were generated by shifting draws from
a two-dimensional standard-normal random variable by 5,
either along the first dimension (Class 1) or along the sec-
ond dimension (Class 2). Subsequently, we normalise the
data by subtracting its mean and dividing by its standard
deviation.

SPAM is a binary dataset that contains 4,601 samples, of
which 60% are benign. Each sample consists of 54 real-
valued and three integer-valued features. However, iden-
tical or better prediction accuracies can be achieved with
models involving only 11 of those 57 variables, among
them e.g. the frequency of the word ’free’ in the email, the
share of $ signs in its body, or the total number of capital
letters, which is why we only use these 11 selected vari-
ables. We normalise the data by subtracting its mean and
dividing by its standard deviation.

MNIST38 contains 8,403 samples of images of handwrit-
ten digits, of which roughly 50 % are 3s and 50 % are 8s.
Each sample consists of a 28×28 pixel image in gray scale
(integer values between 0 and 255) which following con-
vention, we normalise by dividing by 255. For better scala-
bility we then downsample to 14× 14 pixels.

The subset of MNIST which we use to compile MNIST358
contains 5,715 samples of images of handwritten digits, of
which roughly 36 % are 3s, 31 % are 5s and 34 % are 8s.
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Figure 7: Average runtimes of Algorithm 1 to calculate πmax(T ) up to specified error tolerance ϵ among the first 50 test
points of MNIST38. Left: Average runtimes for increasing number of dimensions at ϵ = 0.025. Right: Average runtimes
for different values of ϵ with number of dimensions d = 5.

Each sample consists of a 28×28 pixel image in gray scale
(integer values between 0 and 255) which following con-
vention, we normalise by dividing by 255. For better scala-
bility we then downsample to 14× 14 pixels.

F.2 Experimental Settings

For the binary experiments, we use 1,000 randomly se-
lected points as a training set and 200 randomly selected
points as a test set. For the multiclass experiments, scala-
bility of GPs is even more of an issue so we just work with
500 randomly selected points as training set.

For the GP training of binary classification problems, we
use the GPML package for Matlab. For the GP training
of multiclass classification problems, we use the GPstuff
package.

For the safety verification experiments in Section 6.1, we
used a GPC model with a probit likelihood function and the
Laplace approximation for the posterior. For the synthetic
2D data, the number of epochs (marginal likelihood evalua-
tions) performed during hyper-parameter optimisation was
restricted to 20. For the SPAM data, it was restricted to 40.
Finally for the attacks on MNIST38 it was restricted to 10
and 20.

For the robustness experiments in Section 6.2, we give the
specifications of training in the paper itself.

For the interpretability experiments in Section 6.3, we use
a multiclass GPC model with softmax link function and the
Laplace approximation for the posterior. We limit the num-
ber of iterations performed during hyper-parameter optimi-
sation to 10.

The code for the GPFGS attacks as well as LIME was im-
plemented by us in Matlab according to the original Python
code provided by the authors.

G DETAILS ON INTERPRETABILITY
METRIC

Below, we briefly derive our metric for interpretability anal-
ysis ∆i

γ , which by using our bounds does not rely on local
linearity , in a bit more detail.

For a testpoint x∗ and dimension i, we define T i
γ(x

∗) =
[x∗, x∗ + γ ∗ ei] like in the main paper. To analyse the
impact of changes in dimension i, we propose to analyse
how much the maximum of the assigned class probabilities
can differ from the initial class probability π(x∗) over such
a one-sided interval compared to how much the minimum
differs from that initial probability. In other words, we cal-
culate

∆i
γ(x

∗) =
(
πmax(T

i
γ(x

∗))− π(x∗)
)

(21)

−
(
π(x∗)− πmin(T

i
γ(x

∗))
)
. (22)

If increasing the value of dimension i makes the model fa-
vor assigning lower class probabilities, we would expect
this value to be negative and vice versa. To make it more
robust, we center the analysis by calculating the proposed
metric

∆i
γ(x

∗) =∆i
γ(x

∗)−∆i
−γ(x

∗) (23)

=
(
πmax(T

i
γ(x

∗))− πmax(T
i
−γ(x

∗))
)

(24)

+
(
πmin(T

i
γ(x

∗))− πmin(T
i
−γ(x

∗))
)
. (25)

Finally, if instead of a local analysis a global analysis is
desired, we suggest following LIME’s approach in aggre-
gating local insights to a global insight by averaging over a
selection of test points M

∆i
γ =

1

M

M∑
j=1

∆i
γ(x

j). (26)
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Ideally, M contains all test points; however, if for compu-
tational reasons a subselection is to be made, the SP algo-
rithm in Ribeiro et al. (2016) could be used.
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